[年报]腾景科技(688195):腾景科技2021年年度报告
原标题:腾景科技:腾景科技2021年年度报告 公司代码:688195 公司简称:腾景科技 腾景科技股份有限公司 2021年年度报告 重要提示 一、 本公司董事会、监事会及董事、监事、高级管理人员保证年度报告内容的真实性、准确性、完整性,不存在虚假记载、误导性陈述或重大遗漏,并承担个别和连带的法律责任。 二、 公司上市时未盈利且尚未实现盈利 □是 √否 三、 重大风险提示 公司已在本报告中详细阐述公司在经营过程中可能面临的各种风险,敬请查阅本报告第三节“管理层讨论与分析”第四点之风险因素。 四、 公司全体董事出席董事会会议。 五、 致同会计师事务所(特殊普通合伙)为本公司出具了标准无保留意见的审计报告。 六、 公司负责人余洪瑞、主管会计工作负责人刘艺及会计机构负责人(会计主管人员)陈生华声明:保证年度报告中财务报告的真实、准确、完整。 七、 董事会决议通过的本报告期利润分配预案或公积金转增股本预案 公司2021年利润分配预案为:公司拟以实施2021年度分红派息股权登记日的总股本为基数,向全体股东每10股派发现金红利1.25元(含税),预计派发现金红利总额为16,168,750.00元,占公司2021年度归属上市公司股东净利润的30.93%;公司不进行资本公积金转增股本,不送红股。 如在实施权益分派股权登记日前,公司总股本发生变动的,公司拟维持分配总额不变,相应调整每股分配金额,并将另行公告具体调整情况。 该预案已经公司第一届董事会第十三次会议审议通过,尚需提交股东大会审议通过后方可实施。 八、 是否存在公司治理特殊安排等重要事项 □适用 √不适用 九、 前瞻性陈述的风险声明 √适用 □不适用 本报告中所涉及的经营计划、发展战略等前瞻性描述不构成公司对投资者的实质承诺,投资者及相关人士均应当对此保持足够的风险认识,并且应当理解计划、预测与承诺之间差异,敬请广大投资者注意投资风险。 十、 是否存在被控股股东及其关联方非经营性占用资金情况 否 十一、 是否存在违反规定决策程序对外提供担保的情况 否 十二、 是否存在半数以上董事无法保证公司所披露年度报告的真实性、准确性和完整性 否 十三、 其他 □适用 √不适用 目录 第一节 释义 ..................................................................................................................................... 5 第二节 公司简介和主要财务指标 ................................................................................................. 7 第三节 管理层讨论与分析 ........................................................................................................... 11 第四节 公司治理 ........................................................................................................................... 44 第五节 环境、社会责任和其他公司治理 ................................................................................... 59 第六节 重要事项 ........................................................................................................................... 65 第七节 股份变动及股东情况 ....................................................................................................... 91 第八节 优先股相关情况 ............................................................................................................. 101 第九节 公司债券相关情况 ......................................................................................................... 102 第十节 财务报告 ......................................................................................................................... 102
第一节 释义 一、 释义 在本报告书中,除非文义另有所指,下列词语具有如下含义:
第二节 公司简介和主要财务指标 一、公司基本情况
二、联系人和联系方式
三、信息披露及备置地点
四、公司股票/存托凭证简况 (一) 公司股票简况 √适用 □不适用
(二) 公司存托凭证简况 □适用 √不适用 五、其他相关资料
六、近三年主要会计数据和财务指标 (一) 主要会计数据 单位:元 币种:人民币
(二) 主要财务指标
报告期末公司前三年主要会计数据和财务指标的说明 √适用 □不适用 归属于上市公司股东的扣除非经常性损益的净利润同比减少33.50%,基本每股收益同比减少41.1%,稀释每股收益同比减少41.1%,扣除非经常性损益后的基本每股收益同比减少47.54%,主要原因有:1、公司募投新增人员及设备,以及新建厂房搬迁进度未达预期,成本上升较大。2、公司高性能精密光学元器件创新战略的部署实施,研发费用增长较快。 归属于上市公司股东的净资产同比增加101.71%,总资产同比增加58.79%,主要是报告期内公司首次公开发行股票募集资金到账。 经营活动产生的现金净流量为7,548.42万元,较上年数增长82.64%,主要系销售回款增加和公司为提高资金使用效率将部分票据贴现所致。 七、境内外会计准则下会计数据差异 (一) 同时按照国际会计准则与按中国会计准则披露的财务报告中净利润和归属于上市公司股东的净资产差异情况 □适用 √不适用 (二) 同时按照境外会计准则与按中国会计准则披露的财务报告中净利润和归属于上市公司股东的净资产差异情况 □适用 √不适用 (三) 境内外会计准则差异的说明: □适用 √不适用 八、2021年分季度主要财务数据 单位:元 币种:人民币
季度数据与已披露定期报告数据差异说明 □适用 √不适用 九、非经常性损益项目和金额 √适用 □不适用 单位:元 币种:人民币
将《公开发行证券的公司信息披露解释性公告第1号——非经常性损益》中列举的非经常性损益项目界定为经常性损益项目的情况说明 □适用 √不适用 十、采用公允价值计量的项目 √适用 □不适用 单位:元 币种:人民币
十一、非企业会计准则业绩指标说明 □适用 √不适用 第三节 管理层讨论与分析 一、经营情况讨论与分析 2021年,公司面对新冠疫情反复及国际贸易环境变化的不利影响,公司全员上下团结一心,在董事会的领导下,把握通信市场新基建、高功率光纤激光器元器件需求增长带来的行业机遇,围绕年初制定的经营计划,持续技术创新,开拓市场,取得了一定的成绩;报告期内,实现了公司股票在科创板上市,公司的资本实力和品牌影响力得到了进一步增强;公司自建厂房竣工,完成验收、部分搬迁,未来产能得到有效保障;报告期内保持了营业收入的持续增长。 (一)主要经营情况 报告期内,公司深耕光通信和光纤激光领域,伴随着高功率光纤激光器元器件下游应用需求的增长,以及下半年光通信元器件市场需求的平稳复苏,2021年度公司实现营业收入30,274.98万元,较上年同期增长12.44%,其中光纤激光领域实现收入16,788.52万元,占公司营业收入的55.45%;光通信领域实现收入12,625.14万元,占公司营业收入的41.70%。报告期内实现归属于母公司所有者的净利润5,228.18万元,较上年同期减少26.25%,主要原因是募投项目新增人员及设备,以及新建厂房搬迁进度未达预期,成本上升较大;高性能精密光学元器件创新战略的部署实施,研发费用增长较快。 报告期末,公司总资产额为100,930.23万元,较报告期初增长58.79%;归属于母公司的所有者权益为83,684.50万元,较报告期初增长101.71%。主要原因是:报告期内公司首次公开发行股票募集资金到账。 (二)主要业务回顾 1、科创板首发上市 报告期内,公司股票于2021年3月26日在上海证券交易所科创板挂牌上市。公司首次公开发行人民币普通股(A股)3,235万股,发行价13.60元/股,募集资金总额4.4亿元。随着上市完成,公司将充分发挥科创板平台优势,加快战略布局的推进,推动公司发展再上新台阶。 2、持续加大研发投入,积极探索产品新兴运用领域 报告期内,公司研发投入2,479.60万元,研发投入占比营业收入8.19%,较上年的1,997.31万元增加482.29万元,同比增长24.15%,主要取得以下成果: (1)在高质量耦合和准直元件方面:解决了微透镜模压技术的面形精确控制和光斑形貌控制的问题; (2)在高效率高可靠性光学调制器件方面:在光学晶体共晶键合技术方面取得突破; (3)在高稳定性精密光源方面:解决了激光芯片与单模保偏光纤耦合稳定性和效率问题; (4)在非球面透镜阵列方面:开发非球面透镜阵列生产工艺及性能检测,在模具设计、模具制作以及模压工艺上作出更大的创新和突破; (5)实现了高耦合效率低功耗的微型声光调制器、快轴准直透镜、单模保偏光源等产品的研发转量产。 在知识产权方面,报告期内,公司新增13项专利,其中5项发明专利,8项实用新型专利,截至2021年12月31日,公司拥有7项发明专利,66项实用新型专利。报告期内,公司通过了福建省院士专家工作站和福建省企业技术中心的认定,被评为“福建省知识产权优势企业”、“福建省数字经济领域未来独角兽”。 2021年10月,公司顺利通过IATF16949汽车质量管理体系的审核并取得证书,为未来新兴业务的开展奠定基础。 3、加强公司内控制度建设,规范公司治理 报告期内,公司根据国家相关法律法规,制定和完善了《公司章程》《募集资金管理制度》《信息披露事务管理制度》《内幕信息知情人登记管理制度》《信息披露暂缓与豁免事务管理制度》《防范控股股东及关联方资金占用管理制度》《金融衍生品交易业务管理制度》等相关制度。 进一步规范了公司募集资金使用及管理、内幕信息知情人登记管理、信息披露、外汇保值管理等行为,防范公司在经营和管理上可能存在的风险。 4、加强募集资金管理,推进募投项目建设 公司严格按照《上市公司募集资金管理和使用的监管要求(2022年修订)》等相关法规及公司《募集资金管理制度》的规定,对募集资金实行专户存储,规范募集资金的管理与使用。报告期内,为提高募集资金使用效率,公司使用部分暂时闲置募集资金进行现金管理,为公司及股东谋取较好的投资回报。公司积极推进募投项目的实施建设,截至报告期末,“光电子关键与核心元器件建设项目”已完成竣工验收,公司产能将逐步释放,“研发中心建设项目”已按项目备案期限完成建设并投入使用。 5、完善软硬件设施,提升经营管理效率 报告期内,公司搬入新厂房,进行智能化园区建设,在园区安全建设、员工智能化管理等方面进行应用扩展,通过信息化手段逐步实现园区智慧化。同时,升级ERP系统,加快信息沟通和流转效率,加强供应链、生产制造和财务管理等一系列信息化模块建设,提高业务管理信息化水平和管理效率。 二、报告期内公司所从事的主要业务、经营模式、行业情况及研发情况说明 (一) 主要业务、主要产品或服务情况 1、主营业务 公司是专业从事各类精密光学元件、光纤器件研发、生产和销售的高新技术企业。光电子元器件是信息系统最前端的光电感知部件,广泛应用于各领域,从传统的光学传感、照明、通信、激光、能量检测、信息存储、传输、处理和显示,到生物医疗、消费类光学、汽车、航空航天、量子通信、半导体等行业的生产和应用,存在于日常生活和经济活动的大部分领域。公司的产品主要应用于光通信、光纤激光等领域,部分应用于量子信息科研、生物医疗、消费类光学等领域。 自成立以来,公司主营业务未发生重大变化。公司与下游知名企业及科研机构建立了合作关系,包括光通信领域的Lumentum、Finisar、华为等;光纤激光领域的锐科激光、nLIGHT等企业。同时公司凭借较强的技术研发实力和创新能力,为科研机构及其承担的国家重大科研项目,提供了科研所需的光电子元器件。 2、主要产品 公司产品主要包括精密光学元件、光纤器件两大类,具体如下: (1)精密光学元件 精密光学元件是各类光纤器件和光模块的基础,通过光学元件的不同组合,可使光纤器件、光模块实现不同的特定功能。公司生产的精密光学元件产品主要包括平面光学元件、球面光学元件、模压玻璃非球面透镜等。 公司的精密光学元件产品具体如下:
(2)光纤器件 在光通信与光纤激光领域,所应用到的光纤器件包含有源光纤器件与无源光纤器件。公司的产品仅涉及无源光纤器件。公司的光纤器件产品主要包括镀膜光纤器件、准直器、声光器件及其他光纤器件等。 公司的主要光纤器件产品具体如下:
在光纤激光器中,其关键的光纤器件包括泵源、隔离器、声光器件、合束器等,公司产品在光纤激光器泵源中的应用情况如下: 在光纤激光器中,精密光学元件、光纤器件的技术水平决定了光纤激光器输出的激光功率水平和性能参数,直接影响激光器的可靠性和稳定性,因此光电子元器件对于光纤激光器的制造具有重要意义。 (3)其他领域 公司生产的光电子元器件除应用于上述领域外,近年来陆续拓展量子信息科研、生物医疗、消费类光学等领域的应用,具体如下: ①量子信息科研 量子信息技术是世界科学技术具有代表性的前沿领域之一,可以突破现有信息技术的物理极限,在信息处理速度、信息容量、信息安全性、信息检测精度等方面均能发挥重大作用,显著提升信息获取、传输和处理能力。当前量子信息技术的研究与应用主要包括量子计算、量子通信、量子测量等。 在量子信息科研领域,公司作为科研机构客户的供应商,为我国量子计算、量子通信领域重大科研项目提供了精密光学元件产品。例如,在当今世界量子计算科研领域前沿的18光量子比特纠缠,和20光子输入60×60模式干涉线路的玻色取样量子计算项目,以及我国自主研发的量子计算原型机“九章”和“九章二号”中,均使用了公司的产品,产品涉及(二向色镜)、HWP(半波片)、filter(滤光片)、PBS(偏振分束器)、BS(即NPBS,消偏振分束器)、YVO4等精密光学元件,相关科研项目的成果已在《Nature》、《Science》、《Physical Review Letters》等学术杂志上发表。 ②生物医疗 目前,公司的滤光片、偏振分束器、透镜、模压玻璃非球面透镜等精密光学元件产品,已应用于内窥镜系统、流式细胞仪、DNA测序仪、拉曼光谱仪等生物医疗器械和设备。生物医疗器械和设备中的精密光学系统及元器件的质量,保证了设备的成像质量,是实现功能的关键组成部分。 我国目前已成为全球生物医疗器械和设备的重要生产基地,且高技术、高附加值设备的占比将逐渐扩大,公司未来也将进一步受益于生物医疗器械和设备市场、技术的发展。 ③消费类光学 a.在AR领域,公司开发的棱镜组合、模压玻璃非球面透镜、光波导镜片等精密光学元件,应用于AR等新兴消费电子产品。AR是新一代的信息通信技术的关键领域,借助近眼显示、感知交互、渲染处理、网络传输、内容制作等技术,构建身临其境与虚实融合沉浸体验。其中精密光学是AR应用的关键支撑技术之一。目前,AR的技术及应用处于发展初期,具有产业潜力大、技术跨度大、应用空间广的特点,未来市场前景十分广阔。 b.在智能驾驶领域,公司主要向部分激光雷达客户提供透镜、窗口片、滤光片、棱镜、反射镜等精密光学元件,应用于激光雷达光路传输的系统中,目前公司在激光雷达应用领域的业务正处于送样或小批量验证阶段。激光雷达是车辆安全和智能化的核心高端传感器,随着国家智能汽车创新发展战略的推进,将给激光雷达光学元器件行业带来更广阔的市场空间。 (二) 主要经营模式 1、盈利模式 公司主要从事各类精密光学元件、光纤器件研发、生产和销售,面向光通信、光纤激光、量子信息科研、生物医疗、消费类光学等领域的客户,为客户提供定制化产品,满足客户特定需求,获得收入、现金流和利润。同时由于公司在光学薄膜技术、精密光学技术等方面处于行业领先水平,部分客户会委托公司对其产品进行镀膜、切割等加工处理,公司以此获得加工服务收入。 公司采用定制化业务模式,下游应用领域主要为光通信、光纤激光等领域,而部分同行业公司存在提供标准化产品的情况,下游应用领域较广,不仅包含光通信与光纤激光领域,还包含消费类光学、汽车、家用&移动设备、能源、生命科学以及半导体设备等领域。 2、采购模式 公司采购的内容主要包括原材料(基片、光纤线、特种玻璃、工装夹具、五氧化二钽等)、辅料(抛光粉、金刚砂等)、设备(各类光学加工设备、检测设备等)。对于原材料和辅料,在保证安全库存的基础上,公司采购部门根据订单情况统一安排采购计划,并向合格供应商下达采购订单,到货后经质量检验部门检验合格后入库。公司的主要采购流程如下:
公司的生产模式主要为自主生产模式。在自主生产模式下,由于精密光学元件、光纤器件产品的功能具有多样性,公司的生产采用“按单生产为主、预测为辅”的模式。公司主要根据下游客户对产品的具体指标要求,进行定制化生产、柔性化制造,尽可能提高生产设备的利用率;同时对于部分订单稳定、连续性强、生产周期较长的产品,销售部根据客户提供的信息做年度、季度预测,生产部根据预测制定生产计划。光纤器件生产过程中,除少部分领用自制的精密光学元件、光纤器件半成品外,大部分所需的原材料为直接外购。 公司生产模式除了自主生产模式外,还存在委外加工模式。公司向接受委托加工企业提供精密光学元件、光纤器件生产所需的主要原材料,由接受委托加工企业自行采购生产所需的辅材或其他材料。接受委托加工企业按照公司要求的工艺流程、技术参数指标组织生产,产成品所有权归属于公司。公司与接受委托加工企业签署相关合同,并根据合同约定支付加工费。 4、销售及营销模式 (1)生产制造产品的销售模式 公司制造产品的销售为直接销售。公司与大客户深度合作,在下游客户产品研发阶段即开始介入参与,根据客户提供的产品规格指标要求进行产品开发,样品经客户测试认证通过后,进行大批量生产供货。 公司的直接销售包括普通销售及VMI销售2种模式,具体情况如下: ①普通销售模式 在新客户开发方面,公司主要通过参加展会进行宣传推广,公司在展会后会与新客户进行进一步接洽,推动后续打样、批量供货工作。公司拓展客户的其他方式还包括自主拜访潜在客户、原有客户介绍、产品市场口碑影响、行业内推荐、客户主动接洽、网站宣传等。 在存量客户合作方面,公司主要面向光通信、光纤激光等领域的客户。公司一般以协议方式进行销售,客户与公司进行阶段性议价后,根据具体产品需求签署相关订单。 ②VMI销售模式 报告期内,公司的部分产品,采用VMI销售模式。公司根据个别客户的需求预测,将产品送至其指定的VMI仓库,完成入库。客户根据实际需求,至VMI仓库提货。公司根据客户定期的提货情况进行对账,确认当期领用存货的数量与金额,以客户领用金额确认当期销售收入,未领用的货物仍为公司所有。同时,公司会根据VMI仓库管理系统中库存的实时变化及存货量要求,适时进行补货,确保VMI仓库中产品的库存量持续符合客户要求。 公司所生产制造产品的销售流程如下:
(三) 所处行业情况 1. 行业的发展阶段、基本特点、主要技术门槛 (1)行业的发展阶段: 公司所处光通信、光纤激光等领域,均属于我国实施创新驱动发展战略的重要组成部分,是我国向制造强国、科技强国转型过程中的重要发展领域。其中,5G和云计算技术已成为国际高科技知识产权竞争的焦点和制高点,高功率激光器是先进制造业的关键技术。公司的精密光学元件、光纤器件产品作为上述科技产业的基础,面临良好的产业发展态势和市场前景。 从下游应用端市场规模来看,随着5G商用时代的来临,光通信器件市场已进入新的增长周期,据LightCounting预测,2021-2026年全球光模块市场复合增长率预计为14%,预计2026年全球光模块市场规模将接近180亿美元。近年来全球工业激光器需求的提升主要源于传统激光加工设备的存量替换和新兴市场的新增需求,伴随着全球激光市场的稳步增长以及我国传统制造业转型升级、先进制造业快速发展,作为激光加工设备的核心部件,光纤激光元器件行业将面临良好的发展机遇,据Industry Perspective预测,2020年全球工业激光器市场规模为51.57亿美元,预计未来5年全球工业激光器年均复合增长率为11.3%,2026年整体市场规模可达88.08亿美元。 2020年3月,中共中央政治局常务委员会会议强调了加快5G网络、数据中心等新型基础设施建设进度;2022年2月,国家全面启动了“东数西算”工程,拟通过构建数据中心、云计算、大数据一体化的新型算力网络体系,将东部算力需求有序引导到西部,优化数据中心建设布局,促进东西部协同联动。光通信网络是信息基础设施重要组成和关键承载底座,“东数西算”重大工程的启动实施,将对光通信领域的高速光模块和光器件产生积极作用,将有力促进上游光电子元器件产业加速发展。同时,国家产业政策支持基础共性技术的研究,有力推动了光电子元器件所在光学行业的技术进步和突破,缩短了与国际先进水平的距离,越来越多产业链关键产品实现了国产化,使我国的光学光电子产业从关键光电子元器件到下游各终端产品实现了整体的技术提升,行业的国际竞争力不断增强。 (2)行业的发展特点: 光学光电子行业是融合光学、电子、材料、半导体等多学科交叉的复合型高科技行业,具有产品品种多样、应用领域广泛、制造工序复杂的特点。光电子元器件的发展很大程度上取决于下游应用领域的需求,下游应用领域市场规模扩大以及对光电子元器件技术水平要求的提升,不断促进、推动光电子元器件行业的发展。近年来,随着有关部门陆续出台相关产业政策,鼓励光电子元器件及下游各应用行业的发展,极大拓展了光电子元器件下游应用领域的发展空间,推动了光电子元器件需求的增长,提高了光电子元器件行业的整体技术水平,为光电子元器件企业的发展注入了市场动力。 (3)行业的主要技术门槛: 精密光学元件、光纤器件制造工序复杂,涉及多个学科交叉,对工艺诀窍的积累要求较高,公司在高功率激光光学薄膜的制备、精密光学元件的加工、玻璃非球面透镜的模压成型、光纤器件的制作等方面已形成自主掌握的核心技术,公司产品涉及的领域对于可靠性要求非常高,新进入的厂商往往需要较长的时间进行工艺摸索和导入,对新进入者有较高的技术壁垒和生产工艺经验。 2. 公司所处的行业地位分析及其变化情况 公司处于光通信、光纤激光产业链上游,公司基于核心技术开发的精密光学元件、光纤器件产品已在光通信以及光纤激光等领域得到了产业化应用,助力我国光电子元器件国产化的进程。 在光通信领域,公司的精密光学元件和光纤器件应用于光收发模块、动态可调模块(如WSS模块)等各类光模块与子系统,最终应用于电信网络、数据中心等信息网络设施,助力光通信系统向更高传输速率和带宽容量发展,支撑4G/5G等通信技术和大型数据中心技术的迭代升级。在光纤激光领域,公司生产的精密光学元件以及镀膜光纤器件、准直器、声光器件等光纤器件产品,已应用于光纤激光器的量产。公司产品具有较高的激光损伤阈值,是高功率光纤激光器的重要元器件,助力高功率激光器技术的创新发展。此外,公司的偏振分束器(包括偏振分束器型干涉堆)、消偏振分束器、滤光片、镀膜光纤线等多款产品,是国家相关科研项目的关键元器件,公司的相关产品已应用在包括当前世界量子信息科研前沿的18光量子比特纠缠等科研项目中,相关科研成果公司与下游行业的知名厂商均建立了合作关系,公司的数据中心用CWDM滤光片、应用于WSS模块的光学元件、高功率镀膜光纤线等产品,在细分领域具有较高的市场影响力。 3. 报告期内新技术、新产业、新业态、新模式的发展情况和未来发展趋势 公司主要产品为精密光学元件、光纤器件,属于光学光电子行业。光电产业被认为是21世纪全球经济发展的四大支柱产业之一,包括光通信、激光、光学镜头、光电显示、光存储等多个细分子行业,涵盖信息光电子、能量光电子、消费光电子、军事光电子等几大领域,其中光电子器件是本行业的关键。公司按产品应用领域主要分属于光通信行业、光纤激光行业及其他新兴科技领域。 (1)所处行业新技术的发展情况和未来发展趋势: ①光电子元器件向复杂膜系、小型精密化发展,推动下游光电系统技术升级 光电子元器件位于光学光电子产业链的上游。其中,光学元件是现代光学和光电系统重要的组成部分,已经成为下游光通信等高科技产业领域的关键元件。滤光片、偏振片、反射片等各类光学元件的技术突破,已逐渐成为现代光学及光电系统加速发展的主因。精密光学元件的制备涉及材料研究、镀膜技术、精密冷加工、光胶工艺、关键装备及无损检测等一系列新技术、新材料、新工艺、新装备。 a.光学元件的膜系设计日趋复杂化,对光谱控制能力和精度越来越高。光学元件在控制光束过程中,需要在光学元件表面镀制不同材料、不同膜层的薄膜,光学薄膜主要由介质或者金属分子蒸发形成。基于光的干涉效应,可依托光学薄膜得到各种光学特性,包括减少或增加表面反射、实现光谱调控等功能;也可在一定波段内实现高反射而在相邻波段内实现低反射,以达到分色、合色的目的,可以使不同偏振状态的光束具有不同的传播特性,以达到偏振分离、偏振转换的功能。 目前光学薄膜领域中,绝大多数属于多层膜系统,其光学特性与膜系的层数、各膜层的材料、厚度和折射率有关,随着光学元件应用范围扩大,薄膜对光谱吸收、位相及偏振状态的变化不断提出新的要求,膜系设计也日趋复杂。光学元件的镀膜层数目前已可达百层以上,膜系结构复杂,层数较多,工艺实现也更加困难,体现了当今世界光学行业的前沿技术水平。特别是投影显示和光通信技术的快速发展,出现了许多新型的光学膜系结构,膜系的波长定位可达到1nm甚至0.1nm以下。精密光学元件向复杂膜系发展,对光谱控制能力和加工精度越来越高,有力支撑了下游光电系统技术的创新。 b.光学元件的精密、超精密光学加工关键技术不断突破。光学元件的加工精度主要包含两个方面,即形状精度、表面光滑程度。加工精度的不足会降低光束质量,增加无用信号甚至产生错误信号,随着激光、光通信等技术的发展,光学元件的精密、超精密加工技术快速提升。世界各国都把大型光学元件高效超精密加工技术列为研究重点,甚至组成跨国合作研究联合攻关。“高精度光学元件”作为精密超精密加工关键技术已被列入科技部“十三五”先进制造技术领域科技创新专项规划重点突破。 精密模压技术是一种高精度光学元件加工技术,引发了光学玻璃零件加工方法的重大变革,自上世纪80年代中期开发成功至今已不断技术进化了20余年,成为国际上最先进的光学元件制造技术方法之一。模压玻璃非球面技术克服了传统精密加工技术在成本、效率、批量化生产等方面的缺陷,以及避免了树脂注塑成型透镜在折射率、热稳定等性能的不足,使光学仪器缩小了体积和重量,节约材料,降低成本,且改善了光学仪器设备的性能,提高了光束质量。模压玻璃非球面透镜的模压成型技术综合了玻璃材料、超精密模芯加工、镀膜、模压成型工艺及成型仿真等诸多领域的先进技术,涉及光学、热力学、物理学、材料科学等多个学科,欧美日等发达国家的技术和装备代表了行业先进水平,我国也将相关技术研究列为国家科技重大专项课题。模压玻璃非球面透镜已日益小型化、精密化,目前光通信领域应用的产品直径甚至已达1.0mm。随着设备的改进、模压工艺的优化、高性能模具的制备技术提升,未来将有更多光学元件由精密模压成型技术加工完成,将在高精度光栅、微小阵列元件、3D手机曲面屏、车载光学等领域具有广阔的应用前景。 c.光电子元器件向小型化、集成化方向发展。近年来,随着新材料、新工艺和新产品在不断涌现,光电子元器件行业正面临一个迅速发展的时期,同时,下游应用领域的需求也推动着光电子元器件不断朝着小型化、集成化的方向发展,例如,在光通信领域,数据中心、5G、云计算等应用的爆发式增长要求光电子元器件向小型化、集成化、高速率、低功耗方向升级,对于满足高速率标准的、更集成化、更小型化的半导体光模块的需求大幅增加。微透镜阵列、全息透镜、DOE、Diffuser等新型光学元件也越来越多地应用在各种光器件中,使光器件更加小型化、阵列化和集成化,并且能够实现普通光学元件难以实现的微小、阵列、集成、成像和波面转换等新功能,而光子晶体、微光子、微纳光电、微腔激光器等技术将为光器件集成化演进奠定坚实基础。 ②光电子器件技术突破对光通信产业向高速率、长距离、大容量、低成本方向升级和变革产生深远影响 光电子元器件技术的发展推动着光通信系统向高速率、长距离、大容量和低成本方向不断发展。例如,20世纪90年代,光放大器应用于光通信中对光信号的直接放大,补偿光路传输损耗,奠定了光通信长距离传输的基础。波分复用器件可以使单根光纤中传输几十甚至上百个波长的光,以充分利用光纤的有效带宽。21世纪以来密集波分复用(DWDM)系统的商用,极大地扩展了光通信传输的容量。基于波长选择开关(WSS)的ROADM系统的应用,可使光通信网络传输节点实现全光交叉连接,在云计算领域可将数以百计的数据中心连接形成大型云网络。 因此,在光电子元器件技术的支持下,光通信的传输速率已从 40Gbit/s、100Gbit/s向400Gbit/s飞跃,甚至已达到了1Tbit/s,传输容量从10Mbit/s到几十Tbit/s,跨距已可实现从200km到5,000km的提升。 ③光电子元器件向更高的抗激光损伤阈值发展 激光技术是光学光电子的重要分支,起源于20世纪60年代,与原子能、半导体、计算机并称为20世纪新四大发明之一,深刻影响了科学、技术、经济和社会的发展和变革。通过激光技术实现更高的功率和光束质量,是激光领域最为活跃的研究方向之一,其技术演进涉及薄膜、光学加工、胶合、器件设计和检测等光学光电子多方面技术环节。 在强激光系统中,光电子元器件的光学薄膜具有重要作用。光学薄膜即使出现十分微小的瑕疵,也会导致输出光束质量的下降,甚至引发激光系统的瘫痪。激光光学薄膜的抗损伤阈值是整个激光系统向高能量、高功率方向发展的关键瓶颈,也是影响激光系统使用寿命的决定性因素之一,是当今高功率激光技术的研究热点之一。高功率激光光学薄膜的制备是一个工艺环节冗长、复杂的系统工程,包括薄膜设计理论、高纯原材料控制、光电子元器件表面超精密加工、膜厚控制、检测技术等内容,涉及多学科交叉。作为激光技术发展的支撑基础,我国目前已逐步攻克了高抗损伤阈值薄膜的关键技术难题,建立了应用基础研究、关键技术攻关与工程应用的生态链。 激光系统对光电子元器件的精密加工也具有较高要求。光电子元器件的光学加工精度不足,会降低其抗激光损伤阈值,光学元件的超光滑加工技术也成为当代科技前沿的关键技术之一。为了适应强激光的需求,提升光学元件的面形和表面粗糙度,先后出现了浴法抛光、浮法抛光、离子束抛光等先进的抛光技术。同时,在光学元件组合中出现了不使用任何胶水而达到光学元件牢固结合的键合技术,进一步提升了光学元件的抗损伤阈值和激光器的功率水平,体现了较高的光学加工水平。 近年来激光技术科研创新也十分活跃,在基础科学和前沿科学方面的应用广泛。在工业应用中,随着光学薄膜、光学加工、高端器件等关键技术的突破,工业领域应用的激光器功率水平得以不断提升,近年来单模光纤激光器的功率已扩展到15-20 kW的水平。高激光损伤阈值的光学元件及光电子器件技术成为当今科学研究的重点领域之一。科技部《“十三五”先进制造技术领域科技创新专项规划》提出,针对大功率激光器制造,要提升激光晶体/光学晶体等激光器关键功能部件的国产化水平,光电子元器件生产制造水平的提升已成为大功率激光器国产化的重要支撑。 ④新型光电子技术的进步与应用,促进新兴科技领域蓬勃发展 当前,新一代信息技术正加速与个人穿戴、交通出行、医疗健康、生产制造等领域集成融合,催生智能硬件等新兴科技产业的蓬勃发展,这些科技产业的发展应用离不开例如衍射光学技术的光学光电子技术的突破。 传统的光电子元器件(如透镜、反射镜、棱镜等)是基于光的反射与折射特性,而衍射光学是基于光的衍射原理工作。基于衍射光学技术的光电子元器件,是利用计算机辅助设计,通过半导体芯片制造工艺,在基片上刻蚀产生台阶型或连续浮雕结构,形成同轴再现、具有极高衍射效率的光学元件。20世纪70年代集成电路的革命性发展,促进了光波长级别的衍射光学元件得以设计生产并实际应用。衍射光学元件在AR、智能驾驶、智能座舱、激光投影显示、生物医疗、光通信、数据存储和消费娱乐等多个领域得到了应用,如在AR眼镜(头盔)中,衍射光学元件显著减少了AR眼镜(头盔)光学系统的重量和体积,拓宽了光谱范围和出瞳口径,解决大视场设计导致的大畸变以及大视场带来的尺寸和重量增加等问题,使AR眼镜(头盔)具有更高的性价比。 衍射光学是在计算全息的基础上,光学与微电子学技术相互渗透与交叉的产物,在推进常规光学元件和传统光学加工技术变革方面具有创新意义。现有加工衍射光学元件的技术方法较多,包括光刻法、薄膜沉积法、金刚石车削法、准分子激光加工法等,但现有方法仍需解决综合解决成本、加工周期、加工精度以及批量化生产要求等技术问题。因此,衍射光学元件等新型光电子元器件的高精度、低成本、批量化加工制备需求,推动了光电子元器件技术的不断进步,同时新型光电子技术的进步与应用也促进新兴科技领域的蓬勃发展。 (2)所处行业新产业、新业态、新模式的发展情况和未来发展趋势: 光学光电子行业因其处于科技创新的前沿阵地,应用十分广泛,是许多国家重大战略项目实施的关键所在。 在光通信领域,光通信网络系统已经成为国家战略新兴产业和新一代通信网络的关键基础设施,被列入了《国家信息化发展战略纲要》、《“十四五”国家信息化规划》、《“十四五”信息通信行业发展规划》、《“双千兆”网络协同发展行动计划(2021-2023年)》、《基础电子元器件产业发展行动计划(2021—2023 年)》等国家战略规划、发展计划中。围绕光波处理和传输的各类光电子元器件构成了光通信系统的技术基础。具体而言,光有源器件实现了光通信系统中光信号与电信号之间的转换,被称为光传输系统的心脏;光无源器件实现了光路的连接、分路、交换、隔离、合路、控制等,可改变光信号的传播特性。在上述精密光学系统中,光电子元器件是直接实现光波切割、分离等功能的基本单元。随着5G网络、千兆宽带、全光网络、数据中心等新基建的推进,依托超高速、大容量、长距离的光通信设施,将发展出更加丰富的应用场景需求,如AR、VR等可穿戴设备、汽车智能驾驶有望接力智能手机、平板电脑等智能手持设备,成为下一代消费级电子产品重要增长极,由此带来的对光电子元器件的需求,有望保持较高增长态势。 在工业激光领域,高端激光装备面向航空航天、高端装备制造、电子、新能源、新材料、医疗仪器等国家重大需求。根据科技部规划,我国将重点实现高性能激光器及光电子元器件的国产化与产业化。光电子元器件是高性能激光器的基础,其应用了减反膜、反射膜、滤光膜等光学薄膜技术,同时隔离器、合束器、声光调制器等器件也是高性能激光器的重要组成部分,因此高端光电子元器件是支撑高性能激光器制造技术发展的关键环节之一。 在量子信息科研领域,光电子元器件是量子信息科研及产业化的基础,量子通信已被纳入“十四五规划”培育发展战略性产业,量子通信可从根本上、永久性地解决信息安全问题;量子计算可实现高速并行计算,有利于解决人工智能等新兴科技对计算能力的要求。在量子信息处理过程中,主要涉及信息的初始化、传递、操控和读取等四个部分,因此偏振分束器(PBS)、干涉堆、消偏振分束器(NPBS)、标准具等光电子元器件,作为量子信息系统的关键元器件,在我国量子信息科研及产业化发展战略中,发挥了重要作用。 在生物医疗领域,应用光学仪器设备进行检查,辅助医疗成为越来越重要的诊疗方式之一。 随着医疗水平提高,医疗设备升级迭代,对光学仪器内的光电子元器件的要求也越来越高。《“十四五”医疗装备产业发展规划》中明确要发展新一代医学影像装备,推进智能化、远程化、小型化、快速化、精准化、多模态融合、诊疗一体化发展,开展产业基础攻关行动,攻关3D视觉系统中高速光学元件等关键核心元器件及医疗机器人用光学镜头、导光率内窥镜光纤、高分辨率柔性光纤传像束等关键零部件。根据医疗统计机构Evaluate MedTech发布的数据显示, 2017年全球医疗器械市场销售额为4,050亿美元,预计2024年销售额将达到5,945亿美元,复合增长率为5.6%,以中国为代表的新兴市场是全球最具潜力的医疗器械市场,产品普及需求与升级换代需求并存,近年来增长速度较快,受益于经济水平的发展,健康需求不断增加,中国医疗器械市场迎来了巨大的发展机遇,也推动着上游配套医用光电子元器件行业发展壮大。 在消费类光学领域,近年来,随着5G建设的加快,新产品和新技术的不断成熟, AR再度获得高度关注。5G时代超高清和AR的结合,是技术迭代、体验升级催生出的新商业模式,将促进超高清视频产业生态、AR硬件技术走上成熟。此外,5G技术可以有效改善AR在带宽、时延双敏感的应用痛点,优化适配各类网络传输技术,弥合潜在技术断点,推动相关市场规模不断增长。 目前AR设备种类繁多,先进程度和应用场景不尽相同,虽然当前的AR设备主要面向企业市场,售价高、销量低,而面向消费者的AR设备还尚未获得市场的普遍欢迎,但根据IDC预测,AR设备将从2020年的500万台增长到2025年的2100万台。同时,AR产业已被列为数字经济重点产业并进入“十四五”国家规划布局,毋庸置疑,随着5G时代的到来,AR技术与行业应用的融合正在进入加速期,AR设备渗透率将持续提升。精密光学元器件、光学系统作为AR设备实现优质成像效果和良好用户体验的核心组件,发展出较多类型,但每种类型均未成熟。随着阵列光波导、衍射光波导等AR设备光学元器件相关技术的发展和进化,以及应用软件、内容的丰富,设备的体积、成像问题及用户体验感也将逐渐改善, AR显示设备向更轻、更薄、更智能的方向发展。 当前,全球新一轮科技革命和产业变革蓬勃发展,汽车与能源、交通、信息通信等领域有关技术加速融合发展,电动化、网联化、智能化成为汽车产业的发展潮流和趋势,带有鲜明跨界融合特征的智能网联汽车(智能汽车、自动驾驶、车路协同)应运而生,成为全球产业发展方向。 智能驾驶、智能座舱将是实现汽车智能网联的关键应用,汽车通过搭载先进传感器等装置、运用人工智能和5G通信等新技术,持续提升智能化水平,汽车不仅能够满足消费者的出行需求,也成为办公、娱乐的新场所。根据Yole预测,2020年,全球ADAS市场规模为86亿美元,雷达、摄像头模组、激光雷达市场规模分别为38亿美元、35亿美元和0.4亿美元;2025年,全球ADAS市场规模将增长至224亿美元,复合年均增长率为21%,其中,雷达、摄像头模组、激光雷达市场规模分别为91亿美元、81亿美元和17亿美元,增速分别为19%、18%和113%。激光雷达、车载摄像头是智能驾驶技术的核心感知器件,感知作为智能驾驶的先决条件,其探测精度、广度与速度直接影响智能驾驶的行驶安全。智能驾驶与智能座舱均需要使用车载摄像头,车载摄像头可以用于获取视觉影像,具有较高的分辨率和温度适应性,可以分辨出障碍物的大小和距离,识别行人、交通标识牌及车道线,监控驾驶员驾驶状态,提供车内视频聊天功能。激光雷达与光模块技术同源,激光雷达主要由发射模块、接收模块、主控模块以及扫描模块构成,激光雷达的光学设计将直接影响光斑的质量、测量距离和测距精度等性能,因此需要精密的光学元器件使得激光器和探测器能够实现更好的光电转换过程。尽管激光雷达最终技术路径尚未确定,但透镜、滤光片、窗口片和隔离器等产品作为基础光学元器件,可适用于不同的激光雷达方案中。随着国家智能汽车创新发展战略的推进,将给光电子元器件行业带来更广阔的市场空间,同时也推动着车载光学行业技术革新。 (未完) |